Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Med Sci Monit ; 28: e934102, 2022 Jan 25.
Article in English | MEDLINE | ID: covidwho-1651076

ABSTRACT

BACKGROUND Heat-clearing and detoxifying herbs (HDHs) play an important role in the prevention and treatment of coronavirus infection. However, their mechanism of action needs further study. This study aimed to explore the anti-coronavirus basis and mechanism of HDHs. MATERIAL AND METHODS Database mining was performed on 7 HDHs. Core ingredients and targets were screened according to ADME rules combined with Neighborhood, Co-occurrence, Co-expression, and other algorithms. GO enrichment and KEGG pathway analyses were performed using the R language. Finally, high-throughput molecular docking was used for verification. RESULTS HDHs mainly acts on NOS3, EGFR, IL-6, MAPK8, PTGS2, MAPK14, NFKB1, and CASP3 through quercetin, luteolin, wogonin, indirubin alkaloids, ß-sitosterol, and isolariciresinol. These targets are mainly involved in the regulation of biological processes such as inflammation, activation of MAPK activity, and positive regulation of NF-kappaB transcription factor activity. Pathway analysis further revealed that the pathways regulated by these targets mainly include: signaling pathways related to viral and bacterial infections such as tuberculosis, influenza A, Ras signaling pathways; inflammation-related pathways such as the TLR, TNF, MAPK, and HIF-1 signaling pathways; and immune-related pathways such as NOD receptor signaling pathways. These pathways play a synergistic role in inhibiting lung inflammation and regulating immunity and antiviral activity. CONCLUSIONS HDHs play a role in the treatment of coronavirus infection by regulating the body's immunity, fighting inflammation, and antiviral activities, suggesting a molecular basis and new strategies for the treatment of COVID-19 and a foundation for the screening of new antiviral drugs.


Subject(s)
COVID-19 Drug Treatment , Coronavirus/drug effects , Drugs, Chinese Herbal/pharmacology , SARS-CoV-2/drug effects , Alkaloids/chemistry , Alkaloids/pharmacology , Caspase 3/drug effects , Caspase 3/genetics , Coronavirus/metabolism , Coronavirus Infections/drug therapy , Cyclooxygenase 2/drug effects , Cyclooxygenase 2/genetics , Databases, Pharmaceutical , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Flavanones/chemistry , Flavanones/pharmacology , Humans , Indoles/chemistry , Indoles/pharmacology , Interleukin-6/genetics , Lignin/chemistry , Lignin/pharmacology , Luteolin/chemistry , Luteolin/pharmacology , Mitogen-Activated Protein Kinase 14/drug effects , Mitogen-Activated Protein Kinase 14/genetics , Mitogen-Activated Protein Kinase 8/drug effects , Mitogen-Activated Protein Kinase 8/genetics , Molecular Docking Simulation , NF-kappa B p50 Subunit/drug effects , NF-kappa B p50 Subunit/genetics , Naphthols/chemistry , Naphthols/pharmacology , Nitric Oxide Synthase Type III/drug effects , Nitric Oxide Synthase Type III/genetics , Protein Interaction Maps , Quercetin/chemistry , Quercetin/pharmacology , SARS-CoV-2/metabolism , Signal Transduction , Sitosterols/chemistry , Sitosterols/pharmacology , Transcriptome/drug effects , Transcriptome/genetics
2.
Eur Rev Med Pharmacol Sci ; 25(21): 6741-6744, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1524862

ABSTRACT

OBJECTIVE: Coronaviruses are large, enveloped, positive-stranded RNA viruses. These viruses contain spike-like projections of glycoprotein on their surface, which appear like a crown. Millions of infections and thousands of deaths have been reported worldwide to date. Hence, the objective of the present study was to look for in silico evaluation of certain commercially available flavonoids against SARS-CoV-2 enzyme. MATERIALS AND METHODS: The in silico docking calculations were carried out using AutoDock 4.2 software. For the computational investigation, Apigenin, Catechin, Galangin, Luteolin, Naringenin were selected. An anti-viral drug Remdesivir was selected as reference drug. RESULTS: In the present study we found that Naringenin showed excellent binding score with the SARS-CoV-2 enzyme compared to the reference drug and other selected flavonoids. CONCLUSIONS: Based on the docking results, we conclude that Naringenin can be considered worthwhile to check its antiviral activity for the management of Coronavirus disease.


Subject(s)
Antiviral Agents/chemistry , Molecular Docking Simulation , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Antiviral Agents/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Catechin/chemistry , Catechin/metabolism , Flavanones/chemistry , Flavanones/metabolism , Flavonoids/chemistry , Flavonoids/metabolism , Humans , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism
3.
Biomolecules ; 11(11)2021 10 27.
Article in English | MEDLINE | ID: covidwho-1488476

ABSTRACT

Glycosylation is an important post-translational modification that affects a wide variety of physiological functions. DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin) is a protein expressed in antigen-presenting cells that recognizes a variety of glycan epitopes. Until now, the binding of DC-SIGN to SARS-CoV-2 Spike glycoprotein has been reported in various articles and is regarded to be a factor in systemic infection and cytokine storm. The mechanism of DC-SIGN recognition offers an alternative method for discovering new medication for COVID-19 treatment. Here, we discovered three potential pockets that hold different glycan epitopes by performing molecular dynamics simulations of previously reported oligosaccharides. The "EPN" motif, "NDD" motif, and Glu354 form the most critical pocket, which is known as the Core site. We proposed that the type of glycan epitopes, rather than the precise amino acid sequence, determines the recognition. Furthermore, we deduced that oligosaccharides could occupy an additional site, which adds to their higher affinity than monosaccharides. Based on our findings and previously described glycoforms on the SARS-CoV-2 Spike, we predicted the potential glycan epitopes for DC-SIGN. It suggested that glycan epitopes could be recognized at multiple sites, not just Asn234, Asn149 and Asn343. Subsequently, we found that Saikosaponin A and Liquiritin, two plant glycosides, were promising DC-SIGN antagonists in silico.


Subject(s)
COVID-19/immunology , Cell Adhesion Molecules/antagonists & inhibitors , Epitopes/chemistry , Glycosides/chemistry , Lectins, C-Type/antagonists & inhibitors , Polysaccharides/chemistry , Receptors, Cell Surface/antagonists & inhibitors , Amino Acid Motifs , Binding Sites , COVID-19/metabolism , Computer Simulation , Cytokines/metabolism , Flavanones/chemistry , Glucosides/chemistry , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Monosaccharides/chemistry , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/chemistry , Saponins/chemistry , Spike Glycoprotein, Coronavirus/chemistry
4.
Int J Mol Sci ; 22(16)2021 Aug 20.
Article in English | MEDLINE | ID: covidwho-1376839

ABSTRACT

Wogonin is one of the most active flavonoids from Scutellaria baicalensis Georgi (baikal skullcap), widely used in traditional Chinese medicine. It exhibits a broad spectrum of health-promoting and therapeutic activities. Together with baicalein, it is considered to be the one of main active ingredients of Chinese medicines for the management of COVID-19. However, therapeutic use of wogonin may be limited due to low market availability connected with its low content in baikal skullcap and lack of efficient preparative methods for obtaining this compound. Although the amount of wogonin in skullcap root often does not exceed 0.5%, this material is rich in wogonin glucuronide, which may be used as a substrate for wogonin production. In the present study, a rapid, simple, cheap and effective method of wogonin and baicalein preparation, which provides gram quantities of both flavonoids, is proposed. The obtained wogonin was used as a substrate for biotransformation. Thirty-six microorganisms were tested in screening studies. The most efficient were used in enlarged scale transformations to determine metabolism of this xenobiotic. The major phase I metabolism product was 4'-hydroxywogonin-a rare flavonoid which exhibits anticancer activity-whereas phase II metabolism products were glucosides of wogonin. The present studies complement and extend the knowledge on the effect of substitution of A- and B-ring on the regioselective glycosylation of flavonoids catalyzed by microorganisms.


Subject(s)
Flavanones/chemistry , Flavanones/pharmacology , Scutellaria baicalensis/chemistry , Animals , Biotransformation , Flavanones/isolation & purification , Flavanones/pharmacokinetics , Fungi/drug effects , Humans , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
5.
J Agric Food Chem ; 68(41): 11434-11448, 2020 Oct 14.
Article in English | MEDLINE | ID: covidwho-1301138

ABSTRACT

The dried fruits of Amomum tsao-ko were first revealed to have hypoglycemic effects on db/db mice at a concentration of 200 mg/kg. In order to clarify the antidiabetic constituents, 19 new flavanol-fatty alcohol hybrids, tsaokoflavanols A-S (1-19), were isolated and determined by extensive spectroscopic data and ECD calculations. Most of the compounds showed α-glucosidase and PTP1B dual inhibition, among which 1, 2, 6, 11, and 18 exhibited obvious activity against α-glucosidase with IC50 values of 5.2-9.0 µM, 20-35 times stronger than that of acarbose (IC50, 180.0 µM); meanwhile, 6, 10-12, and 19 were PTP1B/TCPTP-selective inhibitors with IC50 values of 56.4-80.4 µM, 2-4 times stronger than that of suramin sodium (IC50, 200.5 µM). Enzyme kinetics study indicated that compounds 1, 2, 6, and 11 were α-glucosidase and PTP1B mixed-type inhibitors with Ki values of 13.0, 11.7, 2.9, and 5.3 µM and 142.3, 88.9, 39.2, and 40.8 µM, respectively. Docking simulations proved the importance of hemiacetal hydroxy, the orientation of 3,4-dihydroxyphenyl, and the length of alkyl in binding with α-glucosidase and PTP1B.


Subject(s)
Amomum/chemistry , Fatty Alcohols/chemistry , Flavanones/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Hypoglycemic Agents/chemistry , Plant Extracts/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Fatty Alcohols/isolation & purification , Flavanones/isolation & purification , Fruit/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Humans , Hypoglycemic Agents/isolation & purification , Plant Extracts/isolation & purification , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry , alpha-Glucosidases/chemistry
6.
Molecules ; 26(5)2021 Feb 25.
Article in English | MEDLINE | ID: covidwho-1121891

ABSTRACT

Despite the virulence and high fatality of coronavirus disease 2019 (COVID-19), no specific antiviral treatment exists until the current moment. Natural agents with immune-promoting potentials such as bee products are being explored as possible treatments. Bee honey and propolis are rich in bioactive compounds that express strong antimicrobial, bactericidal, antiviral, anti-inflammatory, immunomodulatory, and antioxidant activities. This review examined the literature for the anti-COVID-19 effects of bee honey and propolis, with the aim of optimizing the use of these handy products as prophylactic or adjuvant treatments for people infected with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Molecular simulations show that flavonoids in propolis and honey (e.g., rutin, naringin, caffeic acid phenyl ester, luteolin, and artepillin C) may inhibit viral spike fusion in host cells, viral-host interactions that trigger the cytokine storm, and viral replication. Similar to the potent antiviral drug remdesivir, rutin, propolis ethanolic extract, and propolis liposomes inhibited non-structural proteins of SARS-CoV-2 in vitro, and these compounds along with naringin inhibited SARS-CoV-2 infection in Vero E6 cells. Propolis extracts delivered by nanocarriers exhibit better antiviral effects against SARS-CoV-2 than ethanolic extracts. In line, hospitalized COVID-19 patients receiving green Brazilian propolis or a combination of honey and Nigella sativa exhibited earlier viral clearance, symptom recovery, discharge from the hospital as well as less mortality than counterparts receiving standard care alone. Thus, the use of bee products as an adjuvant treatment for COVID-19 may produce beneficial effects. Implications for treatment outcomes and issues to be considered in future studies are discussed.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Honey , Molecular Dynamics Simulation , Propolis , SARS-CoV-2/metabolism , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , COVID-19/epidemiology , COVID-19/metabolism , Chlorocebus aethiops , Clinical Trials as Topic , Flavanones/chemistry , Flavanones/therapeutic use , Nigella sativa/chemistry , Propolis/chemistry , Propolis/therapeutic use , Vero Cells
7.
Acta Pharmacol Sin ; 41(9): 1167-1177, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-691161

ABSTRACT

Human infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and there is no cure currently. The 3CL protease (3CLpro) is a highly conserved protease which is indispensable for CoVs replication, and is a promising target for development of broad-spectrum antiviral drugs. In this study we investigated the anti-SARS-CoV-2 potential of Shuanghuanglian preparation, a Chinese traditional patent medicine with a long history for treating respiratory tract infection in China. We showed that either the oral liquid of Shuanghuanglian, the lyophilized powder of Shuanghuanglian for injection or their bioactive components dose-dependently inhibited SARS-CoV-2 3CLpro as well as the replication of SARS-CoV-2 in Vero E6 cells. Baicalin and baicalein, two ingredients of Shuanghuanglian, were characterized as the first noncovalent, nonpeptidomimetic inhibitors of SARS-CoV-2 3CLpro and exhibited potent antiviral activities in a cell-based system. Remarkably, the binding mode of baicalein with SARS-CoV-2 3CLpro determined by X-ray protein crystallography was distinctly different from those of known 3CLpro inhibitors. Baicalein was productively ensconced in the core of the substrate-binding pocket by interacting with two catalytic residues, the crucial S1/S2 subsites and the oxyanion loop, acting as a "shield" in front of the catalytic dyad to effectively prevent substrate access to the catalytic dyad within the active site. Overall, this study provides an example for exploring the in vitro potency of Chinese traditional patent medicines and effectively identifying bioactive ingredients toward a specific target, and gains evidence supporting the in vivo studies of Shuanghuanglian oral liquid as well as two natural products for COVID-19 treatment.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections , Drugs, Chinese Herbal , Flavanones , Flavonoids , Pandemics , Pneumonia, Viral , Virus Replication/drug effects , Administration, Oral , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Betacoronavirus/physiology , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Enzyme Assays , Flavanones/chemistry , Flavanones/pharmacokinetics , Flavonoids/chemistry , Flavonoids/pharmacokinetics , Humans , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , SARS-CoV-2 , Vero Cells , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL